高比能锂硫电池研究取得新进展新时代
发布时间:2020-06-02 18:42:06
锂电池体系作为一种高效的装置备受青睐,已经广泛用于便携式电子器件(、笔记本等),目前正应用于新能源电动汽车、及清洁能源(风能和太阳能)大规模储能中,从而降低人类对化石能源的过度依赖,减低二氧化碳及相关废弃排放,减少温室气体对全球气候的影响以及对城市的空气污染。
随着人们对日用电子消费产品以及电动车要求不断提升,迫切需要发展更高能量密度的电池体系。室温可充放锂-硫二次电池(Li-Sbatteries)的理论能量密度为2654Wh/kg,是锂离子电池(LiCoO2/C,脱锂0.5,理论能量密度360Wh/kg)理论能量密度的7倍。可充放锂硫电池预计能量密度可以达到Wh/kg,有望显著提高电动汽车的续航里程。制约可充放锂硫电池应用的两个核心技术难题为:在充放电过程中如何抑制中间产物多硫离子的溶解和如何稳定金属锂负极避免产生锂枝晶。
最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)的清洁能源实验室E01组胡勇胜研究员和博士生索鎏联想乐Pad以优秀的产品性能敏等提出了一类新型双功能电解液体系 Solvent-in-Salt (SIS),并将其应用于锂硫电池中,同时解决了多硫离子溶解和稳定金属锂负极两项关键技术难题。通过大幅提高锂盐浓度,将大量自由溶剂分子与锂盐络合,有效抑制了多硫离子在电解液中的溶解,有效避免了充电过程中溶解于电解液的多硫离子形成的 多硫离子穿梭 效应,防止了电池的严重过充现象,循环库仑效率接近100%,循环稳定性明显提高。与此同时,较常规低盐浓度电解液体系而言,由于高盐浓度电解液体系具有高的阴阳离子浓度(7molLiTFSI/1LDOL-DME),高的锂离子迁移数(0.73)以及较高的粘度(72cP),有效避免了由于金属锂沉积不均匀所带来的金属锂枝晶生长(高锂离子浓度有利于金属锂负极的均匀物质交换;高的阴离子浓度和粘度,有助于降低金属锂负极表面由于阴离子耗尽所产生的空间电荷层,从“最近住建局和工商局在联合查处五证不全的项目而降低了金属锂非均匀沉积的电场驱动力;高粘度体系在一定程度上增加了锂枝晶生长的阻力。),使得金属锂负极在循环过程中的稳定性大大提高。
他达拉非能常服用吗
灰指甲的真菌从何而来
惠州治疗白癜风医院